

Centre for Applied Materials Science

High Throughput Design of Ternary Pd Alloys for Optimum Sulfur / Carbon Resistance in Hydrogen Separation & Carbon Capture Membrane Systems

Scott D. Hopkins (PI), Hongbin Zhao (Presenter)

NETL CO₂ Capture Technology Meeting Pittsburgh / July 9 – 12, 2012

Project Background: Problem and Approach

- Project overview
- Palladium membrane technology background
- Project progress as of 06/30/2012
- Future plans

Profile of Pall Corporation

Pall Corporation is a global leader in the high-tech filtration, separation and purification industry. We've become a \$2.7 billion company with nearly 11,000 employees around the world by helping customers solve complex fluid management challenges. (www.pall.com/profile)

Better Lives, Better Planet

I Corporation has offices and ants throughout the world

ort Washington, NY 1105 00.645.6532 toll free 516.484.5400 phone

516.801.9754 fax

Project Overview

Project Objectives

- Develop an economic, high temperature and pressure, hydrogen separation membrane system for CO₂ capture that resists moderate levels of contaminants, typical in gasified coal.
- Create an advanced palladium alloy for optimum hydrogen separation performance using combinatorial material methods for high-throughput screening, testing, and characterization.
- Demonstrate durability by long term testing of a pilot membrane module at a commercial coal gasification facility.
- Understand long term effects of the coal gasifier environment on the metallurgy of the membrane components.

Project Overview

Participants

- Pall Corporation (project management, membrane fabrication and its scale-up technology, prototype membrane and module test)
- Cornell University (Combinatorial sample fabrication)
- Georgia Institute of Technology (Surface characterization of alloys)
- Oak Ridge National Laboratory (in-situ XRD of alloy phases)
- Southern Company (Long-term membrane module test)

Funding

- \$1,517,000 Total
- \$1,207,000 U.S. Department of Energy
- \$310,000 Cost Share

Performance Period

• Oct 1, 2009 to Sept 31, 2012 as proposed (three-year project)

How Palladium Membrane Works

Hydrogen Transport Through Palladium Film

- H₂ dissociation on metal
- H dissolves into metal
- H diffuses through metal
- Recombination to form H₂

Hydrogen Selectivity

Infinite for defect-free palladium film

Hydrogen Flux Equation

- **Q:** H₂ permeability of palladium
- L: Thickness of palladium film
- P_{H2, feed}: H₂ partial pressure in feed
- P_{H2, permeate}: H₂ pressure in permeate

$$J_{H_2} = \frac{Q}{L} (P_{H_2, feed}^{0.5} - P_{H_{2, permeate}}^{0.5})$$

Design & Operating Considerations

- High hydrogen permeable metal alloy
- Free membrane fouling materials
- Thin membrane
- High membrane area
- High pressure
- High temperature

Centre for Applied Materials Science

IGCC Power Plant with Pre-Combustion CO₂ Scrubbing

Palladium Membranes in IGCC Power Plants

Project Schedule & Milestones

		20	09		2010		2011				2012				
Task#	Project Milestone Description	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1	Project management and planning													-	
2	Literature and patent search			->											
	<u>Milestone 1</u> Report demonstrating understanding of previous work			7	۲.										
3	Design and modeling of binary and ternary Pd alloys					->									
	Milestone 2 Report on use of combinatorial method					,	•	man	the no	cost	ovto	neion			
4	Construct and test 15 cm ² active membrane area prototypes						J	mon	uis nu	J-CUSI	exte	151011	-		
	<u>Milestone 3</u> Report on testing of small scale membranes														
5	Scale up active membrane area from 15 to 75 cm ²										-				
	<u>Milestone 4</u> Report on testing of scaled-up membranes														
6	Construct and test a working membrane module													+	
	<u>Milestone 5</u> Report on long-term performance of membranes														
7	Provide complete analysis of relevant data sufficient of permit economic evaluatoin of the process											-		-	
	<u>Milestone 6</u> Report on advancement necessary to commercialize membrane process														

Progress and Current Status

Task	Timeline	Completion
 Task 4 Construct and test 15 cm² active surface area prototypes of novel Pd alloy membranes for use as high temperature, high pressure gas separation membranes under coal gasifier conditions Optimize process for making zirconia substrates suitable for each candidate Pd alloy Fabricate best candidate palladium alloys into thin film membrane prototypes with 15-cm² active 	Oct 2010 to Sept 2011 (nin months of no cost extension due to limit to the film deposition facility from subcontractor)	30% e in
surface area over optimized zirconia substrate		
 Test hydrogen separation performance of each best candidate alloy under coal gas conditions with trace amounts of impurities, including sulfur, for extended period 		

Combinatorial Pd Alloy Development Workflow

Gas Permeation Performance Testing

Centre for Applied Materials Science

Combinatorial Discoveries (Task #3)

No Corrosion Spots on Seven Ternary Composition Spreads

Centre for Applied Materials Science

Pd Alloy Screening Test Protocol

- Sulfur challenge test @ 400°C & 20 psid with a gas mixture of H₂S and H₂.
- Coal gas test @ 400°C & 200 psig (*coal gas composition H₂=17.6%, CO₂=17.9%, H₂O=2.6%, CO=2.6%, N₂=59.3%, H₂S up to 170 ppm)

*The composition of coal gas is provided by U.S. DOE / NCCC (site for future field test).

Gas Permeation Cell

Gas Permeation Test Stand

Sulfur Challenge Test on Pd Membrane

PALL Pall Corporation 15

Sulfur Challenge Test on PdAu Alloy Membrane

Comparison of Sulfur Inhibition: Pd versus PdAu Alloy

Plans to Complete Project

- Make flat sheet samples of alloy candidates selected from task #3 and test them in disc form to screen the best alloys based on sulfur tolerance level
- Select the best alloys and directly make full scale (active surface area 75 cm²) membrane element of novel palladium alloy prototypes
- Conduct 100-500 hour test on these 75 cm² samples in simulated coal gas with trace amounts of impurities including sulfur.
- Construct a working membrane module capable of extended service as a hydrogen separation system
- Conduct 500 hour relevant field test with real gasifier feed at U.S.
 DOE / NCCC
- Detailed process and economic modeling using field membrane performance data

Pall's Capability in Palladium Membranes

Membrane Support & Pd Alloy Membrane Element

Pall's Capability in Palladium Membranes

5kw Palladium Alloy Membrane Module

- Discovered seven coal gas corrosion resistant ternary palladium alloy systems as candidates for sulfur tolerance level screening test
- Free-standing thin film deposition technique with uniform composition for ternary palladium alloy is being developed
- Capability for manufacturing and marketing of portable fuel cell size palladium alloy membrane module is fully established at Pall Corporation.
- Pall's capability above provides infrastructure for this project to complete and meantime success of this project will expand Pall's capability into other markets.

Acknowledgements

- U.S. DOE National Energy Technology Laboratory
 - Patricia Rawls
- Pall Corporation
 - Bill Hogan, Haseeba Syed, Yeny Hudiono
- Cornell University
 - Bruce van Dover
- Georgia Institute of Technology
 - Meilin Liu, Kevin Blinn, Xiaxi Li
- Southern Company
 - Tony Wu, Frank Morton

PALL Pall Corporation 22